مقایسه کارایی پیشبینی دبی ماهانه با استفاده از روشهای شبکه عصبی مصنوعی و سریهای زمانی
Authors
Abstract:
پیشبینی در هیدرولوژی به معنی تخمین شرایط هیدرولوژیکی و هواشناسی در یک بازه زمانی خاص میباشد. در همین راستا، فهم رابطه بین بارش و رواناب یکی از ضروریترین مسائل برای مدیریت منابع آب میباشد. پژوهش حاضر با هدف مقایسه بین مدلهای مختلف شبکه عصبی مصنوعی (MLP وRBF) و سریهای زمانی آرما (ARMA) در برآورد دبی ماهانه در حوزه آبخیز طالقان برای یک دوره 30ساله بین سالهای 1356 تا 1386 پیریزی شد. در روش شبکه عصبی مصنوعی از توابع محرک سیگموئیدی و پارامترهای تعداد تکرار، ضریب یادگیری، تعداد نرون مخفی و خطای هدف که با استفاده از آزمون و خطا بهدست آمده، استفاده شد. همچنین، در روش آرما از بین مدلهای مختلف روشی که دارای کمترین میزان خطا و معیار سنجش آکائیک (AIC) بود بهعنوان مدل بهینه انتخاب شد. نتایج مدلسازی سریهای زمانی با استفاده از مدلهای آنالیز روند، هالت وینترز و باکس-جنکینز (آرما) حاکی از دقت بیشتر مدلهای آرما (2 و 2) (R=0.77) و هالت وینترز (R=0.72) بوده است. در مقایسه بین مدلهای شبکه عصبی مصنوعی، مدل MLP با میانگین ضریب همبستگی 0.83 نسبت به مدل RBF با میانگین ضریب همبستگی 0.81 دقت بیشتری در پیشبینی دبی نشان داده است. در مجموع دقتسنجی مدلها براساس آمارههای ریشه میانگین مربعات خطا و ضریب همبستگی حاکی از دقت بیشتر شبکه عصبی مصنوعی (ANN) نسبت به مدلهای سری زمانی (ARMA) میباشد. همچنین، ارزیابی دقت در مدلهای مختلف حاکی از دقت بیشتر مدل یک (R=0.86 و RMSE=6.45) با ورودیهای دبی یک ماه تا چهار ماه قبل بوده است. بهترین معماری در روش شبکه عصبی مصنوعی نوع MLP، مدل شماره 1 با آرایش 1-20-4 بهترتیب با چهار نرون در لایه ورودی، 20 نرون در لایه مخفی و یک نرون در لایه خروجی شناخته شد.
similar resources
مقایسه کارایی پیش بینی دبی ماهانه با استفاده از روش های شبکه عصبی مصنوعی و سری های زمانی
پیشبینی در هیدرولوژی به معنی تخمین شرایط هیدرولوژیکی و هواشناسی در یک بازه زمانی خاص میباشد. در همین راستا، فهم رابطه بین بارش و رواناب یکی از ضروری ترین مسائل برای مدیریت منابع آب می باشد. پژوهش حاضر با هدف مقایسه بین مدل های مختلف شبکه عصبی مصنوعی (mlp وrbf) و سری های زمانی آرما (arma) در برآورد دبی ماهانه در حوزه آبخیز طالقان برای یک دوره 30ساله بین سال های 1356 تا 1386 پیریزی شد. در روش ...
full textارزیابی کارایی روشهای مرسوم و رایانه ای در بازسازی سری زمانی دبی ماهانه ایستگاه های هیدرومتری
عدم وجود آمار و اطلاعات کامل، نمیتواند مجوزی برای عدم مطالعه شرایط هیدرولوژیکی یک منطقه و پیشبینیهای درازمدت برای انجام یک پروژه آبی باشد. بنابراین پژوهشگران مختلف روشهایی از قبیل آنالیز نسبتها، فرگمنت و توماس فیرینگ را برای بازسازی دادههای ناقص دبی در ایستگاههای هیدرومتری به کار بردهاند. لذا در این پژوهش دقت روشهای مذکور با روشهای رایانهای از قبیل شبکه عصبی مصنوعی، هیبرید عصبی - ...
full textمقایسه عملکرد مدلهای شبکه عصبی و فازی در تعیین دبی ماهانه جریان با استفاده از آمار کوتاه مدت.
بهرهبرداری بهینه از سیستمهای منابع آب و به خصوص تعیین زمان واقعی کارکرد مخازن سدها، مستلزم پیشبینی آورد رودخانههاست. در این مقاله عملکرد مدلهای منطق فازی (FL) و شبکه عصبی مصنوعی (ANN) برای پیشبینی یک و دو ماه بعد جریان حوضه کارون در محل ایستگاه هیدرومتری پلشالو با هم مقایسه شده است. در این راستا از سیستم استنتاجی ممدانی برای ساخت مدلهای FL و همچنین شبکههای پیشرو سه لایه برای مدلسازی ت...
full textپیشبینی بارش ماهانه با مدل ترکیبی شبکه عصبی مصنوعی-موجک و مقایسه با مدل شبکه عصبی مصنوعی
بدون شک اولین قدم در مدیریت رودخانه پیشبینی بارش سطح حوضه آبریز میباشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدلها هنوز هم به منظور تعریف چنین پدیدة پیچیدهای در زمینه مهندسی هیدرولوژیک توسعه داده میشوند. اخیراً شبکههای عصبی مصنوعی به عنوان یک برونیابی و درونیابی غیرخطی گسترده توسط هیدرولوژیستها مورد استفاده قرار میگیرد. در پژوهش حاضر، تجزیه و تحلیل موجک ...
full textمدلسازی هوشمند سری زمانی جریان ماهانه حوضه رودخانه شور قروه با شبکه عصبی مصنوعی
پیش بینی دقیق جریان در رودخانه ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه اتخاذ تدابیری مناسب در مواقع سیلاب و بروز خشکسالی هاست. در حقیقت حصول روشهای مناسب و دقیق در پیش بینی جریان رودخانه ها را می توان به عنوان یکی از چالشها در فرآیند مدیریت و مهندسی منابع آب دانست. در این پژوهش برای مدلسازی هوشمند سری زمانی جریان ماهانه از یک دوره ی آماری26ساله (1389-1364) استفاده شد. جهت دست...
full textبهینهسازی ساختار شبکه عصبی مصنوعی در پیشبینی دبی رسوب با استفاده از روش تاگوچی
در دهه های اخیر شبکه های عصبی مصنوعی به عنوان ابزاری موفق در تخمین و پیش بینی پدیده های هیدرولوژیکی به کار گرفته شده اند. اگرچه استفاده از شبکه های عصبی مصنوعی امکان برآورد بار معلق رسوب رودخانه ها را با دقت و سرعت مناسب فراهم کرده است، اما دقت پیش بینی این مدل ها، به میزان زیادی تحت تاثیر دانش و درک کاربر از شبکه عصبی مصنوعی قرار دارد. در مطالعات منابع طبیعی و به ویژه مطالعات هیدرولو...
full textMy Resources
Journal title
volume 5 issue 2
pages 74- 84
publication date 2013-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023